Semantic technologies for the IoT
– an Inter-IoT perspective –

Maria Ganzha, Marcin Paprzycki, Wiesław Pawłowski, Paweł Szmeja, Katarzyna Wasielewska

SRI PAS, Warsaw, University of Gdańsk
The Internet of Things
IoT silos problem

source: www.digikey.com
“the extent by which two implementations of systems or components from different manufacturers can co-exist and work together by merely relying on each other's services as specified by a common standard.”

Tanenbaum, Van Steen
"Distributed Systems", 2001
Semantics

- **Tagging vs ontologies**
 - *tag* – marker, id, e.g., RFID
 - *ontology* – “formal specification of shared conceptualization”

- **Semantic data representation and processing**
 - semantic *annotations*
 - semantic *linking*
 - knowledge *inference*
The quest for the holy grail...
Inter-IoT Project

interiot

interoperability of heterogeneous IoT platforms
Semantic interoperability

- **Aims and means**
 - meaningful & actionable data
 - querying, reasoning & knowledge extraction

- **Benefits**
 - shared understanding
 - effective data access
 - resource/service discovery
 - seamless integration
Semantics sensors

- **W3C SSN ontology**
 - needs units, location & feature ontologies

- **OpenIoT ontology**
 - W3C SSN extension
 - Linked Sensor Data
 - mobile sensors covered
 - cloud integration
 - data privacy & security
(m/e)-Health

- Main applications of e-Health
 - medical data management
 - medication management
 - patient monitoring
 - telemedicine services

- m-Health
 - utilization of mobile devices
Notable semantic contributions

- vocabularies & taxonomies: SNOMED CT, ICDx
- standards & ontologies
 - Open Biomodical Ontologies
 - OpenEHR
 - CEN/ISO EN13606
- data interoperability
 - HL7: v3, SAIF, FHIR
Transportation & logistics

- **OTN** (Ontology of Transportation Networks)
 - top-level, describing general notions
 - based on Geografic Data Format OWL ontology
- **InterLogGrid** (Logistic Grid Ontology)
 - developed within LOGICAL project
 - service-oriented approach to logistics
- **LogiCO** (Logistics Core Ontology)
 - developed within iCargo and CASSANDRA projects
 - extensions: LogiServ & LogiTrans
Summary

• **Interoperability** between *heterogeneous* IoT platforms
 – needs semantic approach

• **Semantic technologies** still used rather sparingly
 – more promising than in the case of WEB

• **Inter-IoT**: two main application domains
 – (m/e)-Health & transportation and logistics
 – several standards and ontologies worth noting
 – semantic interoperability